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Abstract 
 In order to accurately and effectively obtain the nitrogen content of tobacco leaves during the whole 
growth period, in the present study the field canopy spectrum of the three critical periods of tobacco rosette 
stage, vigorous growth stage and topping stage were used. The correlation analysis of field canopy spectrum, 
first derivative spectrum, hyperspectral parameters and vegetation index with the nitrogen content of tobacco 
leaves was carried out one by one, and the prediction model was established by multiple linear regression 
using the variables with the best correlation coefficient. Results showed that the first derivative spectrum, 
EVI II and green peak position had strong correlation, which is suitable for introducing multivariate 
equations as independent variables. Finally, the modeling determination coefficient (R2) was 0.66, RMSE was 
0.40, and MAPE was 11%. The validation results showed that R2 was 0.73, RMSE was 0.38, and MAPE was 
8.33%, which proved that this model could accurately predict the nitrogen content of tobacco leaves and 
could meet the requirements of large-scale statistical monitoring of tobacco quality indicators in the field. 

 
Introduction 
 Tobacco (Nicotiana tabacum L.) is one of the main cash crops in China. Continued efforts 
have been made to improve the tobacco yields along with rising living standards. Nevertheless, 
higher requirements still need to be met when it comes to tobacco quality, and better tobacco 
quality can bring greater economic benefits. The nitrogen content of tobacco leaves is one of the 
important indicators to reflect the growth status of tobacco in the field. 
 Alinat et al. (2015) reported that the nitrogen content of tobacco leaves has a direct bearing on 
the gene expressions of nitrogen metabolism-related enzymes and on the amount of nitrogen 
metabolites. Such an impact usually persists throughout the entire growth period of tobaccos, 
thereby affecting tobacco leaf quality. For example, Su et al. (2021) studied tobacco cultivar and 
analyzed the optimal fertilization amounts of nitrogen (N)-phosphorus (P)-potassium (K) 
fertilizers. They found that an ideal NPK fertilizer ratio promoted tobacco growth, and its 
influence on tobacco quality was by no means negligible. Hyperspectral remote sensing, 
originating in the 1920s, offers an important tool for experimental science, and this technique can 
be used to identify molecular and atomic structures (Fan et al. 2022). Since different biochemical 
components of crops have distinct absorption bands (El-Naggar et al. 2021), it is feasible to 
monitor crop quality parameters based on optical remote sensing data. The use of hyperspectral 
imaging in tobaccos has been more intensively studied in the following aspect: Prediction models 
for leaf area index, biomass, and quality indicators of tobacco are preliminarily established based 
on the original spectral reflectance, differential transformation, vegetation indice, area variable, 
and position variable obtained by hyperspectral imaging as independent variables. Such prediction  
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models can be used to estimate and monitor tobacco growth and tobacco leaf quality (Cai et al. 
2017). Svotwa et al. (2013) estimated tobacco yield at high precision and efficiency using a drone. 
They further built a yield estimation model based on multispectral data (R2 > 0.7), which provided 
a theoretical basis for small-scale tobacco yield estimation. Gu et al. (2016) extracted the flue-
cured tobacco growing area by combining the multispectral data with the object-oriented method, 
achieving an accuracy of 90.95%.  
 Multispectral imagery is one of the key sources of remote sensing data for tobacco 
monitoring, especially for tobacco yield estimation (Wang et al. 2015, Guo et al. 2019, Huang et 
al. 2021, Divyanth et al. 2022). In fact, hyperspectral images contain more continuous and a larger 
number of wavebands than multispectral images. The former can more precisely differentiate 
between surface features, facilitating the analysis of surface features based on spectral 
characteristics (Chen et al. 2021, Xu and Cui 2021,). The requirements on tobacco quality are no 
less strict than those on tobacco yield. In the present study, the quantitative relationship between 
the nitrogen content of tobacco leaves and hyperspectral variables in three developmental stages, 
namely, rosette stage, vigorous growth stage, and topping stage were analyzed. Besides, the 
hyperspectral prediction model for nitrogen content of tobacco leaves was established. The 
changes in the model's hyperspectral prediction ability for nitrogen content of tobacco leaves were 
characterized across the developmental stages. The influence of multi-stage combination on the 
performance of the prediction model was also discussed. 
 
Materials and Methods 
 The study area was located in the tobacco experimental base in Guiyang County, Chenzhou 
City of Hunan Province. Continuous experiments for two consecutive years (2021 and 2022) were 
conducted using a randomized block design and involving three tobacco cultivars, namely, 
Xiangyan 5, Xiangyan 7, and Yunyan 87. These three cultivars were grown in three independent 
test plots, with five different N fertilizer treatments in each. N0: No fertilization, N1: Local 
fertilization amount*0.5, N2: Local fertilization amount, N3: Local fertilization amount*1.5, N4: 
Local fertilization amount*2. These treatments corresponded to severe nitrogen deficiency, mild 
nitrogen deficiency, appropriate amount of nitrogen fertilization, excessive nitrogen fertilization, 
and severely excessive nitrogen fertilization, respectively. Three replicates were set up for each 
treatment, and a total of 45 plots were involved in the experiments. Each plot measured 3.6  × 7.5 
m, and the area between two adjacent plants was 1.2  × 0.5 m. 
 Analytical Spectral Devices (ASD) Fieldspec 3 Hi-Res spectroradiometer (350-2500 nm) was 
used for the measurement, with a sampling interval of 1.3 mm (for 350-1000 nm) and 2 nm (for 
1000-2500 nm). Spectra were collected at 10:30-14:00 Beijing Time on a sunny day without wind 
or with very low wind speed. The full field of view of the spectroradiometer was 25°C, with the 
probe measuring vertically downwards at 0.6 m from the canopy top. The measurements were 
repeated 10 times within the field of view, and the average was taken as the reflectance spectrum 
at this particular point. Before and after measurements for each treatment, correction was 
performed using the reference board (the site for each measurement was randomly chosen within 
the plot). Spectral measurement was performed once at 40, 50 and 60 days after transplanting, 
respectively. Tobacco samples were collected after the spectral measurement in a synchronous or 
quasi-synchronous manner, followed by laboratory parameter determination. 
 The tobacco leaves samples collected at three different stages were further classified based on 
the potassium fertilization treatment. The total nitrogen content of each tobacco leaf was 
determined by semi-micro-sample distillation. Thus, the measured nitrogen contents of tobacco 
leaf samples in each plot were obtained. 
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 It was found through literature review that the red, yellow and blue edge spectral parameters 
have been frequently used in crop quality monitoring and forecast (Curran 1989, Lamb et al. 2002, 
Olivares Díaz et al. 2019, Zhu et al. 2022). In the present study, the following spectral parameters 
were screened and chosen useful ones to build the prediction model: field canopy spectra, first-
order derivative spectra of the field canopy, five vegetation indices (NDVI, RVI, EVI, DVI, and 
TVI), three-edge parameters (red, blue, and yellow edges), red valley position, and green peak 
position (Table 1). 
 
Table 1. Selected vegetation indices and hyperspectral bands. 
 

Type  Symbol  Name Definition  
Derivative  ρi

’ First derivative (Ri+1−Ri-1)/(xi+1−xi-1) (Gong et al. 2002) 

 
 
Vegetation index 

ND
VI 

Normalized 
difference vegetation 
index 

(NIR-R)/(NIR+R) (Huete, A. R. 1988) 

DVI Difference 
vegetation index 

NIR-R (Gitelson et al. 2002) 

RVI Ratio vegetation 
index 

R/NIR (Pearson and Miller 
1972) 

EVI Enhanced vegetation 
index 

2.5(NIR-R)/(1+NIR+6R-7.5B) (Jiang et al. 2008) 

TVI Conversion 
vegetation index 

0.5NDVI 
 

(Qian et al. 2022) 

 
 
 
 
 
Hyperspectral 
characteristic 
parameters 

Green 
mountain 

Rg Green peak 
reflectivity 

Maximum spectral reflectance 
in the green light range 

(Gong et al. 2002) 

 λg Green edge Rg corresponds to the wave-
length position 

(Gong et al. 2002) 

Red 
valley 

Ro Red Valley 
Reflectivity 

Minimum spectral reflectance 
in the red-light range 

(Gong et al. 2002) 

 λo Red Valley Location Wavelength position 
corresponding to Ro 

(Gong et al. 2002) 

 λr Red edge position Wavelength position 
corresponding to Dr 

(Gong et al. 2002) 

Red edge Dr Red edge amplitude Maximum value of first 
derivative spectrum in red edge 

(Gong et al. 2002) 

 SDr Red edge area Area of first derivative 
spectrum in red edge 

(Gong et al. 2002) 

 λb Blue edge position Wavelength position 
corresponding to Db 

(Gong et al. 2002) 

Blue edge Db Blue edge amplitude Maximum value of first 
derivative spectrum in blue 
edge 

(Gong et al. 2002) 

 SDb Blue edge area Area of the first derivative 
spectrum in the blue edge 

(Gong et al. 2002) 

 λy Yellow edge 
position 

Wavelength position 
corresponding to Dy 

(Gong et al. 2002) 

Yellow 
edge 

Dy Yellow edge 
amplitude 

Maximum value of first 
derivative spectrum in yellow 
edge 

(Gong et al. 2002) 

 SDy Yellow edge area Area of first derivative 
spectrum in yellow edge 

(Gong et al. 2002) 

Ri is the value of spectral reflectance at i in the range of 350 ~ 2500 nm. NIR is any spectral reflectance in the range of 
780-2500 nm. Red is any spectral reflectance in the range of 620 ~ 700nm. 
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 Spectral data were collected for two consecutive years (2021 and 2022) during the 
experiments. The total sample size was 180. Ninety samples collected in the first year constituted 
the training set, and those in the second year the validation set. 
 A multiple linear regression model consisting of several parameters was built and represented 
by the following equation: 

y=b0+b1x1+b2x2+bnxn+e                                 (1) 
 
 where y is the dependent variable; x1, x2, …, xn are n independent variables involved in the 
modeling; b0, b1, b2, and bn are the corresponding constant terms of these independent variables, 
respectively. e is the error term. 
 The following performance indicators of the model were chosen: R2 (coefficient of 
determination), root mean square error (RMSE), and mean absolute percentage error (MAPE). 
 

푅 = ∑  풏
풊 ퟏ (풙풊 풙풊)ퟐ

∑  풏
풊 ퟏ (풙풊 풙)ퟐ                                         (2) 

RMSE =
∑  풏
풊 ퟏ (풙풊 풙풊)ퟐ

풏
                                    (3) 

MAPE =
∑  풏
풊 ퟏ

풙풊 풙풊
풙풊

풏
× 100%                                (4) 

 
where n is the number of sample sets; 푥̅ is the measured nitrogen content of the tobacco leaf; 
xi is the measured value of nitrogen content in tobacco leaf; 푥i is the predicted value of the 
model. 

 The higher the value of R2, the higher the fitting degree of the model would be. RMSE and 
MAPE are accuracy measures of predictions from the regression model. The smaller the RMSE 
and MAPE, the more accurate the predictions. 
 
Results and Discussion 
 Canopy spectra were determined at three key developmental stages, namely, rosette stage, 
vigorous growth stage, and topping stage. For the sake of practicality and validity, invalid 
wavebands with abnormal fluctuations beyond 150 nm were deleted. The remaining frequency 
range from 350 to 1500 nm was used for correlation analysis and for finding the first-order 
derivatives. The results are shown in Figs 1 and 2. 
 As analyzed from Fig. 1, within the visible frequency range of 350 to 750 nm, the coefficient 
of correlation between the spectral reflectance and nitrogen content of tobacco leaves increased, 
peaking at about 693 nm. Within the infrared frequency range of 800 to 1350 nm, the coefficient 
of correlation between the spectral reflectance and nitrogen content of tobacco leaves seemed to 
stabilize. However, the coefficient of correlation fluctuated abnormally in the frequency range of 
1350 to 1500 nm. This finding might be attributed to water absorption and instrument sensitivity. 
 The first-order derivative of the original spectral reflectance and performed a correlation 
analysis against the nitrogen content of tobacco leaves were calculated. The calculation result was 
compared against the coefficient of correlation between the original spectral reflectance and 
nitrogen content of the tobacco leaves. Sensitive wavebands were identified (those with a 
coefficient of correlation above 0.4 were considered sensitive), and the distribution pattern was 
analyzed. As analyzed from Fig. 2, sensitive wavebands in the original spectra were mainly 
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concentrated within the visible frequency range of 500 to 800 nm. On the first-order derivative 
spectra, apart from the sensitive wavebands in the visible frequency range of 350 to 700 nm, the 
number of such wavebands also increased dramatically within the infrared frequency range of 900 
to 1500 nm. 
 

 
Fig. 1. Correlation analysis of canopy spectra in whole growth period. 

 
 As shown in Fig. 2 and Table 2, the range of sensitive wavebands was greatly expanded after 
finding the first-order derivative of the original reflectance. Besides, the degree of correlation also 
increased on the first-order derivative spectra. On the original spectra, the maximum coefficient of 
correlation in the sensitive wavebands ranged between 0.40 and 0.43. The maximum coefficient of 
correlation increased to 0.69 on the first-order derivative spectra. 
 

 
Fig. 2. Distribution of sensitive band of original spectrum and first derivative spectrum in 

         whole growth period. 
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Table 2. The best sensitive band of the first derivative spectrum and the original spectrum in the whole growth 
period. 

 

The original spectrum First derivative spectrum 

Optimum sensitive band r Optimum sensitive band r 

693nm 0.43 1095nm 0.609 

 

 In the infrared and near-infrared frequency ranges, six spectral indices were calculated, 
namely, NDVI, RVI, DVI, TVI, EVI, and EVI Ⅱ. A correlation analysis was performed between 
the measured value of the nitrogen content of tobacco leaves and each of the above spectral 
indices. Results presented in Table 3 showed that the coefficient of correlation between EVI Ⅱ and 
the nitrogen content of tobacco leaves was the highest. Therefore, EVI Ⅱ was introduced as an 
independent variable into the multiple linear regression model. 
 
Table 3. Correlation analysis between leaf nitrogen content and vegetation index of tobacco in whole 

growth period. 
 

 
Growth 
duration 

NDVI RVI DVI TVI EVI EVIⅡ 

Correlation 
coefficient 

Correlation 
coefficient 

Correlation 
coefficient 

Correlation 
coefficient 

Correlation 
coefficient 

Correlation 
coefficient 

-0.253 0.251 -0.351 -0.252 -0.406 -0.453 
 

 Such spectral characteristic parameters as red valley position, green peak position, and three-
edge parameters were calculated and then subjected to normalization and differential calculation. 
A correlation analysis was performed between each of these parameters and nitrogen content of 
tobacco leaves using the SPSS software. Results are shown in Table 4. 
 

Table 4. Correlation analysis of spectral characteristic parameters in whole growth period. 
 

Characteristic 
parameter 

Pearson 
correlation coefficient 

Characteristic 
parameter 

Pearson correlation 
coefficient 

Rg -0.207 SDb -0.376** 
Ro -0.209 Rg/Ro -0.023 
λg -0.458** SDr-SDy -0.051 
λo 0.142 SDr-SDb 0.139 
λr 0.404** SDb-Sdy -0.342** 
λy 0.047 SDr/SDb 0.355** 
λb 0.278* SDr/SDy -0.277 
Dr -0.201 SDb/SDy 0.345** 
Db -0.357** (Rg-Ro)/(Rg+Ro) -0.060 
Dy -0.008 (SDr-SDy)/(SDr+SDy) -0.324** 
SDr -0.051 (SDr-SDb)/(SDr+SDb) 0.391** 
SDy 0.270*   

Rg and Ro are green peak and red valley, λg, λo, λr, λy and λb are green peak, red valley, red edge, yellow edge 
and blue edge respectively, Dr, Db and Dy are red edge, blue edge and yellow edge respectively, SDr, SDy 
and SDb are red edge, blue edge and yellow edge respectively. 
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 A prediction model was established using multiple linear regression. Specifically, a prediction 
model was built using the combination of two or three independent variables, respectively. The 
optimal combination of parameters was determined on this basis. The models built using three 
different combinations of independent variables were compared, as shown in Table 5. It was found 
that the R2 of the model based on the combination of vegetation index, reflectance and spectral 
parameter was higher than that of the other two models. This prediction model was represented by 
Y = 386.6 + 0.76*ρ1095’-1.46* EVIⅡ -0.69*λg. 
 
Table 5. Multiple linear regression prediction model for tobacco nitrogen content. 
 

Parameter combination Prediction model of tobacco leaf content R2 
Reflectance plus spectral parameters Y = 354.3-0.63*λg +0.14*ρ1095

’ 0.55 

Reflectance plus vegetation index Y = 3.038-1.33*ρ1095
’+2.15* EVIⅡ 0.49 

Vegetation index plus reflectance plus 
spectral parameters 

Y = 386.6+0.76*p1095
’-1.46* EVIⅡ-

0.69*λg 

0.66 

px ' is the first derivative of the original spectral reflectance at xnm, λg is the green peak position, Y 
is the nitrogen content of tobacco leaves. 
 

 The above three multiple linear regression models were assessed and validated. The validation 
dataset was a fully independent dataset. The validation results presented in Table 6 showed that R2 

= 0.66 for the multiple linear regression model based on the combination of the three independent 
variables, and R2 = 0.73 for the validation. Both were higher than those of the model based on the 
combination of two independent variables. Thus, the model based on the combination of three 
independent variables, namely, EVI Ⅱ, first-order spectral reflectance, and green peak position, 
was the optimal model for predicting the nitrogen content of tobacco leaves throughout the entire 
growth period. The RMSE of this model was 0.15, and MAPE was 8.33%. The model assessment 
is shown in Fig. 3. 
 
Table 6. Comparison of multiple linear regression models. 
 

Model R2 RMSE MAPE 

Y = 354.3-0.63*λg +0.14*ρ1095
’ 0.66 2.99 30% 

Y = 3.038-1.33*ρ1095
’+2.15* EVIⅡ 0.53 0.44 13% 

Y = 386.6+0.76*ρ1095
’-1.46* EVIⅡ-0.69*λg 0.73 0.38 8.33% 

 
 The present study focused on the monitoring of nitrogen content in tobacco leaves based on 
multiple linear regression modeling. The linear model was easy to construct and involved simple 
calculation. But given the multicollinearity among vegetation indices and hyperspectral 
parameters, it was not possible to introduce several strongly correlated vegetation indices or 
spectral parameters simultaneously into the multiple linear regression model. The present method 
had certain defects due to this fact. In the future, some research on nitrogen content prediction in 
tobacco leaves based on partial least-squares regression (PLS) and principal component analysis 
(PCA), which can overcome the intrinsic defects in linear models and increase the monitoring 
accuracy may taken up. The sensitive bands selected by the models established by these two 
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algorithms are basically concentrated in the range of 780 - 1800nm (Wu and Shi 2004, Xie et al. 
2014, Sampaio et al. 2018, Peiris et al. 2020, Zhao et al. 2022), which provides reference for a 
deeper investigation. 

 

 
Fig. 3. Multivariate linear regression model evaluation. 

 
 As for the sensitive wavebands for nitrogen detection, many scholars believe that the near-
infrared frequency range is more sensitive to nitrogen content. For example, Moharana and Dutta 
(2016) found that the frequency range sensitive for nitrogen content of rice was 760 to 900 nm. Fu 
et al. (2021) showed that the spectral index NDVI could be suitably used for an accurate 
prediction of nitrogen content of wheat leaves. Others have built a high-accuracy prediction model 
for nitrogen content in rice within the visible frequency range. For example, Yang et al. (2020) 
built the prediction model using the first-order differential spectrum at 751 nm and rice leaf 
nitrogen concentration, with the coefficient of correlation reaching 0.841. 
 At present, studies on tobacco quality are still facing some difficulties. In the future, satellite 
data may be combined with data from multiple platforms, including drones, for relevant 
investigations. The recent emergence of big data tools makes the development of new algorithms 
possible, so as to dramatically improve the monitoring accuracy. 
 The present study was concerned with nitrogen content estimation of tobacco leaves 
throughout the entire growth period. The main influence factors of nitrogen content in tobacco 
leaves were analyzed under five different potassium fertilization treatments. A multiple linear 
regression model was built based on the combination of the vegetation index, first-order derivative 
spectral reflectance, and spectral characteristic parameter. Results showed that the potassium 
fertilization amount had no direct impact on the nitrogen content of tobacco leaves. The coefficient 
of determination was 0.66 for the model thus built, the RMSE being 0.40 and MAPE 11%. The 
correlation of determination during the validation experiment was 0.73, RMSE was 0.38, and 
MAPE was 8.33%. 
 It was found that the first-order derivative of canopy spectra resulted in an expansion of 
wavebands sensitive to nitrogen content. The prediction model based on a combination of 
parameters increased the prediction accuracy for nitrogen content of tobacco leaves. However, this 
observation needs to be verified in other tobacco cultivars grown in different regions, so as to 
improve the accuracy and applicability of the prediction model. 
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